

Terahertz heterodyne spectral imager of planets and comets

PI: Boris Karasik/JPL

<u>Target:</u> upper atmospheres of planets, comet comae, geyser and volcano plumes

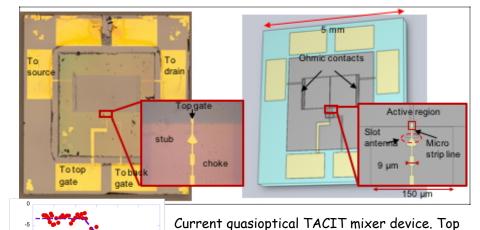
Science:

For moons and the rocky planets:

- Isotope ratio of light molecules H/D, ^{12/1}3C, ^{14/15}N, ^{16/17/18}O => evolution and origin of the atmosphere;
- $2_{2,0}$ - $1_{1,1}$ para and $2_{2,1}$ - $1_{1,0}$ ortho transitions in water near 2.96 and 2.77 THz:

For the giant planets: HD, CH_4 , H_2O , NH_3 are the key tracers of the upper atmosphere <= through detection of THz lines of fragments CH (2 THz), CH_2 (1.9, 2.3, 2.7 THz), OH (2.5 THz), NH (1 THz), NH_2 (1.44 THz), OH (2.06 & 5.4 THz);

For inner planets: water dynamics (1.6-1.8 THz)


New molecular species (e.g. CH+ and O)

Increased wind velocity resolution ~ 1 m/s

Objectives:

- Improve the single-pixel, <u>quasioptical</u> TACIT and demonstrate its noise performance in a laboratory heterodyne receiver at 2.5 THz;
- Develop a waveguide-based TACIT mixer on thin Si membrane for 2.5-3.8 THz waveguide suitable for large heterodyne arrays.

CoIs: Jonathan Kawamura, Mark
Hofstadter/JPL; Mark Sherwin/UCSB

left: optical image. Top right: schematic layout. Bottom: IF response from mixing of two 2.5 THz signals demonstrating the 6-GHz IF bandwidth in the mixer.

Key Milestones:

Frequency (GHz)

- Optimization of the quasioptical TACIT mixer
- Integration of the mixer with bow-tie antenna to allow for good quantum efficiency
- · Validation of high-sensitivity of the mixer at 2.5 THz
- Operating temperature/noise temperature trade-off study
- Achieving a TACIT mixer on Si membrane integrated into waveguide
- Demonstration of the lab system: the starting point for the instrument development under MatISSE

TRL 3 to 4